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ABSTRACT

Idaho National Laboratory, along with Idaho State University’s Idaho 
Accelerator Center and Los Alamos National Laboratory, is developing an 
electron accelerator-based, photonuclear inspection technology, called the Pulsed 
Photonuclear Assessment (PPA) system, for the detection of nuclear material 
concealed within air-, rail-, and, primarily, maritime-cargo transportation 
containers. This report summarizes the advances and progress of the system’s 
development in 2005. The contents of this report include an overview of the 
prototype inspection system, selected Receiver-Operator-Characteristic curves 
for system detection performance characterization, a description of the approach 
used to integrate the three major detection components of the PPA inspection 
system, highlights of the gray-scale density mapping technique being used for 
significant shield material detection, and higher electron beam energy detection 
results to support an evaluation for an optimal interrogating beam energy. This 
project is supported by the Department of Homeland Security Office of Research 
and Development and, more recently, the Domestic Nuclear Detection Office. 
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Pulsed Photonuclear Assessment Technique: 
CY05 Project Summary Report 

1. INTRODUCTION 

In the 1970’s, Idaho National Laboratory (INL) began evaluating an early application of a Pulsed 
Photoneutron Assessment (PPA) technique as a waste conveyor monitoring system.1 While Los Alamos 
National Laboratory (LANL) researchers have developed various neutron interrogation systems, such as a 
waste assay system2, they had also studied a PPA-type technique that used a 10-MeV electron accelerator 
to obtain highly enriched uranium (HEU), natural uranium, and plutonium photofission-product spectra 
between accelerator pulses using a heavily-shielded, high-purity germanium detector.3 INL continued to 
apply the PPA technology to support treaty verification applications related to nuclear weapon 
configurations, which required the development of enhanced radiation detectors4-6 and the design and 
fabrication of a unique, transportable, energy-selectable electron accelerator—the INL Varitron.4 The 
PPA technique, in collaboration with LANL and the Idaho State University’s Idaho Accelerator Center 
(IAC), has continued to support nuclear material detection in various challenging (shielded) 
configurations.7-12 Currently, the Department of Homeland Security’s (DHS) Science and Technology 
Directorate and the Domestic Nuclear Detection Office (DNDO) are fostering the development of an 
advanced nuclear material detection capability applicable to a wide variety of cargo-container types and 
loading configurations.13-17 While this report’s predecessor14 identified and described the development of 
key detection components of the proposed DHS PPA inspection system, this CY05 follow-on report 
summarizes the integrated prototype system. Figure 1 is a schematic of the current prototype PPA 
inspection system for nuclear material detection. 

Figure 1. The DHS PPA nuclear material detection/inspection system. 
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The major attributes of the DHS PPA inspection system include: 

High-sensitivity for detection with fission reactions in nuclear materials 

Complementary, high-resolution, commercially-available x-ray radiography/imaging with 
photon interrogation 

Complementary external neutron interrogation capability using a photoneutron converter placed 
at the photon source 

Commercially-available electron accelerators used as the photon source  

High photon flux intensity from electron accelerators (typically four orders-of-magnitude more 
intense than neutron fluxes from commercial neutron generators) 

High-energy photon penetration through dense and/or thick cargo materials with significant 
photofission reaction yields in nuclear materials  

Complimentary photoneutron production within shield materials and subsequent neutron-
induced fissions in concealed nuclear materials (in addition to photofission effects). 

The most recent version of the delayed transportable, prototype nuclear material detection system 
is shown in Figure 2. It utilizes arrays of custom-built and commercially-available Photonuclear Neutron 
Detectors (PND)9 [patent-pending, 10-atm., helium-3 (He-3) tubes with unique electronics and shielding] 
and co-located, unshielded Geiger-Müller (GM) gamma-ray detectors [patent-pending, LND, Inc. tubes 
(Model 719) with electronics and acquisition software]. Also shown in Figure 2 is a representative 
inspection application utilizing a one-and-a-half metric-ton cargo (i.e., wood and polyethylene pallet 
loading) configuration positioned under the array of detectors.  Inside the trailer, behind the detectors and 
the pallets, are the other major components of the prototype PPA system that includes the pulsed photon 
source and the data acquisition system. User controlled operation is provided from a remote location. 

This report presents an overview of the PPA prototype inspection system, describes the integrated 
detection and acquisition system along with the newest, patent-pending, gray-scale density mapping 
(GSDM) system, provides additional higher electron beam energy detection responses and provides a 
summary with recommendations for continued research and development needs. 
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Figure 2. Transportable, prototype PPA inspection system. 
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2. PROTOTYPE INSPECTION SYSTEM OVERVIEW 

The developing prototype system has been shown to detect nuclear material in a series of seven 
INL Calibration Pallets14-16 even when these pallets are placed in a “challenging” location within a 
realistic cargo container configuration.17 The “challenging” inspection configuration is identified in 
Figure 3, along with the corresponding photographs in Figure 4. The nuclear material is placed in the 
center of the pallets and the pallet is positioned in the center of the cargo container. This inspection 
scenario represents a “challenge” because it provides both a realistic photon source-to-cargo center 
distance (~2.5 to 3 m) while maximizing the nuclear material-to-detector distances for all PND and GM 
detectors. For this cargo inspection configuration, the interrogating photon beam travels through the cargo 
at nearly a 45-degree angle and the radiation detectors are positioned along the sides of the cargo 
container.

Figure 3. Cargo configuration schematic top view (left) and end view (right). Note the detector location 
numbers within “end view.” 

Figure 4. Photographs of the prototype PPA system with a cut away of a cargo container (left), and a 
metric ton of polyethylene being moved into position for a nuclear material inspection (right). 
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For these inspection assessments, Table 1 presents pertinent information about the cargo type and 
the dominant detection effects. A 4.8-kg sample of depleted uranium (DU) was used as a representative 
nuclear material-of-interest. DU was selected since it is readily available, has a high probability of being 
encountered (potential false positive) during commercial cargo inspection applications, and will 
underestimate the system’s performance for the detection of HEU.7 As shown in Table 1, DU was 
detected by neutron emissions in some cases, gamma-ray detection in others, and via both sets of 
detectors in three cases. It is important to note that the PPA system is designed such that any alarm 
(positive detection) response will provide a nuclear material detection event! Combining several similar 
detector responses has increased the nuclear material detection sensitivity in some cases. 

Detailed description and experimental data are presented in Reference 17 regarding the realistic 
cargo container inspection configurations. Table 2 summarizes the overall delayed region-of-interest 
(ROI) detection data (acquired between 1.9 and 8 ms after each accelerator pulse) for 120-s, 125-Hz 
inspections and compares this experimental data to pre-test predictions. These predictions utilized the 
corresponding acquisition time and a similar configuration but with some important differences in 
accelerator standoff distance and angle, DU orientation, and detector locations. Hence, the predictions 
values are best-estimate values. However, even with these uncertainties, most of the neutron and gamma-
ray predictions are well within a factor of two of the experimental results, and hence, final post-test 
evaluations were not deemed necessary. For the Empty and Celotex Pallet cases, the slightly larger 
differences are attributed to the positioning of the DU material within the Empty Pallet and the use of an 
incorrect effective material density with the Celotex Pallet, respectively. 

All calculated pallet responses are based on Monte Carlo calculations using a multi-step INL 
methodology14 that incorporates the MCNPX radiation transport code.18 Appendixes A and B, 
respectively, present information regarding the INL calculation methodology and a clarification between 
single- versus multiple-pulse PPA inspection effects in resolving differences in experimental and 
predictive results. 

Table 1. INL Calibration Pallet Data and Key Detection Information. 

Pallets
Mass

(metric ton) 
Primary 
Material

Material
Density 
(g/cc)

Pallet
Dimensions

(cm)

Primary 
Detection
Challenge 

Detection
with

Neutrons

Detection
with

Gammas 

Empty 
(cylindrical 
annulus)

0.0 Aluminum 2.70 0.6 (thick) x 20 None Yes Yes

Celotex 0.05 “Celotex™” 0.05 107 x 87 x 102 None Yes Yes

Borated 
Polyethylene 

1.0 5%-Borated 
polyethylene 

1.05 107 x 87 x 102 Neutron
Moderation 
and
Absorption

No Yes

Polyethylene 0.9 Polyethylene 0.95 107 x 87 x 102 Neutron
Moderation

No Yes

Wood 0.5 Plywood 0.48 107 x 87 x 102 Neutron
Moderation

Yes Yes

Lead 
(cylindrical 
annulus)

0.2 Lead 10.80 5 (thick) by 28 Photon
Attenuation

Yes No

Iron
(cylindrical 
annulus)

0.9 Iron 7.80 16 (thick) by 
61

Photon
Attenuation

Yes No
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Table 2. Cargo Container Inspection Delayed Neutron Count Data (Avg. of Detector Positions 3 and 16) 
for 120-s Inspections Using 4.8-kg DU and the INL Calibration Pallets. 

Net Neutron Counts Total Gamma-ray Counts 

Pallet Type 

Ratio
(Calculated/ 
Experiment) Experimental

Ratio

(Calculated/ 
Experiment)Experimental

Empty 2589 0.29 776 —

Celotex 2421 0.28 472 0.91

Wood 107 0.92 326 1.0

Lead 145 0.57 — —

Iron 46 0.65 — —

Poly. — — 148 0.7

Borated-Poly. — — 99 1.2

To support field deployment of these PPA inspection systems, a reconfigurable open test cell 
configuration (shown in Figure 5) has been established at the IAC’s Inspection Technology Research and 
Development Laboratory (ITRDL). This open test cell, with a ~5-m wide door access, is ideal for 
supporting both large and small cargo inspection applications and supports both indoor and outdoor tests. 
To facilitate the transportability of the PPA inspection technology, the accelerator used to generate the 
interrogating photons is mounted in an enclosed, ~5-m long trailer. The enclosed trailer not only provides 
system transportability, but also shelters the system from inclement weather. 

Also shown in Figure 5 is a side test cell. This cell includes a Varitron-like electron accelerator (the 
Varitron II) allowing other types of experimental PPA-related support. The Varitron II, built by the IAC, 
has a 2.5E-3cm thick, stainless steel vacuum window (i.e., electron window) and is optionally equipped 
with changeable tungsten electron/photon converters, having selectable thicknesses ranging from 2.54E-2 
to 2.79E-1 cm. Also, the Varitron II has a more “radiation safe” design than the Varitron accelerator, has 
a coaxial solenoid design for enhanced electron beam optics, and incorporates a novel, low-volume, 
prototype energy analyzer for beam analyses. 

For the Wood and Iron Calibration Pallet inspections, Receiver Operating Characteristic (ROC) 
curves (generated using the Analyse-it© Software, Version 1.71, developed by Analyse-It Software, Ltd. 
Leeds, England) are shown in Figure 6 for three separate PND locations. As can be seen, the ROC curves 
for any one of these detector locations show a perfect nuclear material detection response (i.e., 100% 
detection with 0% false positives). For comparison, the delayed gamma response ROC curves are shown 
in Figure 7. These curves are measured with GM detectors that were co-located with the PNDs described 
in Figure 6. The gamma-ray response also shows perfect ROC curves for the Wood Pallet; however, as 
expected, the Iron Pallet curves show that detector locations 4 and 16 provide some detection capability 
while detector location 3 has no discrimination/detection ability. Overall detection performances can be 
enhanced by combining GM detectors responses.  The applicability and implementation of this 
enhancement is being assessed. 

While GM detectors have increased the system’s detection capability (especially for low density, 
hydrogenous cargo types), there are some complexities related to gamma-ray counting in pulsed 
photonuclear environments. One complexity is the copious neutron production associated with each 
interrogating photon pulse that induces time- and material-dependent gamma-ray emissions from an 
inspected cargo. The total delayed gamma-ray environment will depend on the amount and type of cargo. 
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Figure 5. A reconfigurable test cell for indoor/outdoor operations with the PPA inspection system at the 
IAC/ITRDL complex. (The Varitron is inside the trailer and another similar accelerator is located in the 
smaller side test cell.) 
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Figure 6. Neutron response ROC curves for selected PNDs (#3, 4, and 16) with the Wood and Iron 
Calibration Pallets. 
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Figure 7. Gamma-ray response ROC curves for selected GM detectors (#3, 4, and 16) with Wood and 
Iron Calibration Pallets. 

However, a few milliseconds after each interrogating pulse, the resulting thermal neutron environment 
dominates the background gamma emission and results in an active gamma-ray background that could 
easily mask the induced gamma emissions from a concealed nuclear material. An improved signature 
method is proposed that attempts to compensate for this actively induced, gamma-ray background. This 
method utilizes the response of a bare He-3 detector, co-located with the PPA detector arrays, to monitor 
the thermal neutron (see Figure 8, plot number 8) environment (nth), and integrates the time-dependent 
gamma-ray response (see Figure 8, plots 1 thru 7) for each GM detector ( ). This signature method (see 
Equation 1) develops a time (t)-dependent Figure-of-Merit (FOM) that is mathematically evaluated after 
each accelerator pulse (tp = time after each pulse corresponding to a selected delayed ROI) and compares 
it to a predetermined, detection-based, time-dependent signature. 

(tp) dtp

0

t

tp

tp

1/Hz 

nth(tp) dtp

1/Hz 

dtFOM(t) = (1)

This method relies on the fact that gross, time-dependent, thermal neutron capture response, 
measured by a GM tube per induced thermal neutrons during a pulse inspection, is relatively insensitive 
to changing cargo loadings, especially after several milliseconds after each accelerator pulse. Hence, any 
additional delayed gamma-ray contribution from a nuclear material should increase the value of the FOM. 
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Other methods (e.g., optimization of the delayed gamma “region of interest”) and hardware can be used to 
accomplish a similar detection objective and continue to be investigated. 
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Figure 8. Typical inspection time-integrated, GM detector gamma-ray responses (curves 1–7) and a bare 
He-3 detector neutron response (curve 8) after each accelerator pulse for a 120-s, 125-Hz inspection 
without nuclear material. 

It must be emphasized that GM detectors were initially selected as an inexpensive gamma-ray 
detection method to complement the optimized neutron-based detection system. While they, along with 
novel detection algorithms, are proving themselves to be operationally applicable within this type of 
pulsed photonuclear inspection environment, delayed gamma-ray detection within the PPA environment 
still needs to optimized. It is proposed that an assessment be undertaken showing the improvements from 
combined GM detector responses (including faster responding tubes) and the comparable benefits from 
enhanced gamma-ray detection technologies, such as fast scintillators, PIN diodes, higher resolution 
detectors, etc. 
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3. INTEGRATED DETECTION AND ACQUISITION SYSTEM 

An integrated detection and acquisition system has been developed for the DHS PPA inspection 
system that provides automated nuclear material detection capabilities. This integrated detection and 
acquisition system is incorporated in a very flexible National Instruments™ platform, using multiple 
Field Programmable Gate Array (FPGA) Modules and analog-to-digital converters, to support the 
operation of various types of radiation detectors. The nuclear material detection system integrates 
neutron, gamma-ray, and density mapping information into a single user-controlled interface. Figure 9 
presents a diagram of the general layout of the integrated system and shows a photo of the interfacing 
hardware (located with the interrogating accelerator). 

The integrated system acquires data from at least 18 PNDs monitoring the neutron emissions from 
an interrogated cargo loading and compares it to real-time, actively induced, neutron background signal to 
determine if nuclear material is present. The actively induced background neutrons are monitored with 
four PNDs, located near the primary PND arrays, but having their polyethylene shroud openings facing 
away from the cargo loading emissions. In addition, there are 18 GM detectors, co-located with the PNDs, 
for monitoring the gamma-ray emissions from the nuclear materials. Finally, for the prototype system, 
there are 9 GM detectors operating in the proportional region that are used for a patent-pending, 
GSDM method. These transmission mapping detectors are used to detect high-density (or a significant 
amount of low-density) shielding materials in cargo loadings. The ionizing-type radiation detection tubes 
have been selected due to their operational simplicity and their inherent interaction and recovery 
processes. The final two inputs are from a bare He-3 tube (also co-located with the system’s radiation 
detectors) to monitor thermal neutrons and a trigger pulse from the Varitron accelerator to initialize the 
time-dependent counting response. 

Figure 10 shows a representative user interface display for the PPA detection system. The display 
integrates the various radiation detection technologies. The center of the display is a schematic of a static 
cargo container. As nuclear material is detected by any GM or PND radiation detector, a flashing red box 
is overlaid onto the container image showing the time of detection (e.g., 40 seconds in the example 
shown).  Surrounding this cargo container schematic, are two layers of detector counting boxes. The inner 
layer corresponds to the GM detectors whereas the outer layer corresponds to the PNDs. Also, a set of 
detectors can provide detection from under the cargo container in some cases, if applicable. The 
monitoring of the real-time, actively induced neutron background data is shown in the lower right of 
Figure 10. This data is used to define the system’s detection limits. A time-dependent GSDM display of 
the actual cargo loading is shown directly below the count data. The second component of the GSDM 
system provides a shield material detection alarm. This alarm component is the multi-segmented bar, 
shown to the right of the count data, which corresponds to each of the transmission mapping detectors. A 
detector alarm is highlighted (red) when significant shield material is present (relative to a user-preset 
threshold value) during any portion of an inspection and indicates further inspection is mandated.  

To further assist in understanding the user display response, Figure 11 focuses on only a portion of 
the display and includes a picture of an inspected INL Calibration Pallet. The photo has been sized to 
show the co-located PND and GM detector alignments with the surrounding detector boxes. The count 
data correspond to the detector locations identified in Figure 3. Note, Figure 11 also shows the PPA 
transmission mapping detector array to the right of the INL Calibration Pallet.  

For the PND detectors, an alarm is triggered when they measure a signal that is significantly larger 
than the average response being measured by the background monitoring detectors. An alarmed state is 
shown by a highlight (red) around the counting box corresponding to that detector. Another alarm 
condition considers the summed response of groups of three consecutive PND detectors to provide 
increased sensitivity for diffuse/well-shielded sources. When this summed response alarms, a bar next to  
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Integrated System Hardware Diagram
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Figure 9. General layout diagram of the integrated nuclear material detection system (top) and the 
system’s interfacing hardware (bottom). 
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Figure 10. PPA detection system user interface display. 

Presence of depleted 

Figure 11. Selected user interface display with a representative Calibration Pallet inspection (while the 
INL Celotex Calibration Pallet is pictured, the data presented is from a Lead Pallet inspection). 
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the group of PND detectors is highlighted (red). Note, when transitioning from the top- to the side-
detector locations, the summed group indicator changes from a bar to a pair of small boxes located at the 
upper corners of the display. For the 120-s, 125-Hz inspection data of the Lead Calibration Pallet (with 
DU) presented in Figure 11, only 9 out of 18 PNDs have individually alarmed, yet all group detectors 
have alarmed except for the upper right corner group (detectors 10 thru 12). Figure 10 shows similar 
display response data for a 120-s, 125-Hz inspection of the Iron Calibration Pallet containing the 4.8-kg 
DU sample. As can be seen by the fewer detector alarm responses in Figure 10, the Iron Pallet presents a 
more challenging 120-s inspection configuration than the Lead Pallet. 

For the GM detectors, an alarmed state will correspond to a highlighted (red) border around a 
detector’s counting box as shown in Figure 12. This figure shows a representative display for an 
inspection of the INL Polyethylene Calibration Pallet. The GSDM time-dependent display (below the 
counting data) shows the differences observed when DU is inserted in the polyethylene halfway thru the 
sampling process. (Note the 120-s counting data shown is acquired after the DU insertion.) Also, as seen 
by the multi-segment alarm bar, the shield material detector alarm has been activated. The current PPA 
system uses a simple count threshold for each GM detector. Based on the GM detection methodology 
discussed, and other options presented in the previous section, further increases in the detection sensitivity 
should be pursued. 

Figure 12. The user interface display showing the inspection data for the INL Polyethylene Calibration 
Pallet.
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As indicated previously, immediately beneath the integrated counting data on the user display is the 
time-dependent GSDM information corresponding to the cargo loading located between the interrogating 
photon source and the transmission mapping detector array. Figure 13 shows the typical GSDM results 
corresponding to most of the Calibration Pallets (with and without DU present) when positioned in the 
typical PPA-applicable cargo container inspection configuration. As can be seen from left to right, the 
effective pallet (or shield) densities are increasing. The dynamic range of the GSDM system (as deployed) 
is shown by the ability to discriminate the nuclear material within the cargo. The Polyethylene Pallet 
density begins to show signs of significant shielding and discrimination appears to be prohibited in the 
Lead and Iron Pallets. As shown in the Figures 10 and 12 the GSDM display (labeled “High Z 
Discrimination”), the alarm threshold was exceeded for the Iron and Polyethylene Calibration Pallet 
respectively. Clearly one can readily recognize the difficulty of using this simple mapping approach for 
imaging; however, the purpose of this mapping system is not to image nuclear materials, but rather detect 
the presence of significant shielding! 

The Idaho Accelerator System, in partnership with INL, developed another version of this patent-
pending GSDM system for PACECO/Casper-Phillips. This system, consisting of a 16-detector, linear 
array of ionization tubes each separated by about 5 cm (see Figure 14), was initially tested at the IAC with 
a 12.2-m (40-ft) cargo container moving at speeds up to 0.2 m/s (0.65 ft/s). While still focusing on shield 
material detection, the sensitivity of the overall GSDM system was assessed. Figure 15 presents the aerial 
density “image” obtained for this case. Since the bottom of the detector array was positioned about 30 cm 
from the floor of the cargo container, Figure 15 shows the resulting gray scale mapping of the upper 
portions of the Polyethylene and Lead Calibration Pallets. It is interesting to note that Figure 15 also 
identified a plastic chair! 

These transmission “images” are only resolution limited by the tube’s dynamic range and the tube-
to-tube spacing. These tubes are very inexpensive and their overall detection inefficiencies are more than 
balanced by the specific intensity of each interrogating photon pulse. As shown previously, establishing a 
response threshold in each detector’s output response appears to enable the detection of dense objects 
and/or the presence of significant shielding. 

Presence of DU 

Empty Celotex Wood Poly B-Poly Lead Iron 

Figure 13. GSDM of the INL Calibration Pallets with and without the enclosing DU material. 
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Figure 14. PACECO/ISU/INL gray scale density mapping system mounted with the IAC cargo container 
translation test assembly. 

Figure 15. X-ray “image” acquired with the gray scale density mapping system of a 12.2-m (40-ft) cargo 
container.
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4. HIGHER ELECTRON BEAM ENERGY INTERROGATIONS 

At the heart of the PPA technology is the electron accelerator. Experimental assessments have been 
conducted with various electron beam energies showing up to three orders-of-magnitude increases in 
signature responses from 8 to 24 MeV electron beam operation.12,14 The majority of cargo 
characterizations have been performed with nominal electron beam energies at or below 10 MeV 
primarily because of current regulations for food inspections.12 This energy limit applies to general cargo 
inspections since food is shipped in inspected cargo; however, the World Health Organization has 
indicated that higher energy electron beam operations would still be considered.12

To obtain higher detection sensitivities with potentially lower cargo dose and address ever 
higher inspection throughput demands, higher electron beam energy PPA-inspection operations are 
being investigated. Already technologies utilizing electron beam energies up to 24 MeV are well 
established and have found considerable industrial and medical applications. Many of these accelerators, 
especially ones having less than about 8-MeV operations, have even been made field transportable and 
are used for various radiography applications. 

In support of these higher energy enhanced operations, additional energy assessments were 
performed with the 4.8-kg DU sample and the INL Calibration Pallets. For the DU case, Figure 16 
presents the collective results using up to 24-MeV accelerator operations. The test configuration consisted 
of a 2-m DU-to-photon source and DU-to-neutron detector (PND) distance. The beam axis and the DU-
to-neutron detector axis were perpendicular, and the DU was aligned at 45-degrees from the beam axis. 
These experiments were repeated at various times, with various accelerators (Varian’s L2500; up to 
24 MeV and Varian Clinac: up to 20 MeV), and at various IAC testing locations (Main IAC Test Cell 
[TC] and the IAC White Room facility [WR1 and WR2]). While most of the errors involved in these 
results are systematic, arising from the accelerator operations, it is clear that the largest signal-to-noise 
ratios are observed with electron beams in the 14 to 20 MeV range. This increased emission trend has 
been independently observed using thin DU interrogated samples12 and with configurations having longer 
stand-off distances10. Note that this energy range corresponds to the photofission interaction peak in 
nuclear materials. When DU is not present, it is unclear what is driving the increasing detector response 
above an electron energy of approximately 15 MeV. It was initially thought that the O18 ( ,p) N17 with its 
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Figure 16. The energy-dependent PND response with and without the 4.8-kg DU plates using various 
beam currents, accelerators, and testing locations/facilities. (Assumes a ±10% systematic beam energy 
error and uses a perpendicular, 2-m DU-to-accelerator and DU-to-detector test configuration.) 
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photonuclear threshold energy of about 15.9 MeV may be a contributing factor even though its interaction 
cross section is relatively small (~ 6 mb at 24 MeV). This was a good reaction candidate since the 
resulting N17 decays with a response that is very similar to the characteristic signature used by the PPA 
system to detect nuclear materials of interest: ~4 – 6 s decay times and neutron emissions having a 
0.1- to 1-MeV energy range (for this reaction it is 0.4 to 1.0 MeV). Initial studies using selective photon 
source shielding to reduce the effective irradiation volumes have not confirmed this reaction’s dominance. 
Another potential candidate for this background anomaly focuses on the PND design. The PND design 
was originally optimized for electron beam energies up to 10 MeV. A detailed characterization is needed 
for operation at these higher beam energies. In addition, other possible reaction contributions or system 
effects are under investigation. 

Unfortunately, the data collected during the higher energy Calibration Pallet assessment testing, 
including the significantly shielded (lead and borated polyethylene) “Challenge” Pallet, resulted in 
inconclusive data. These inconclusive results are attributed, at least, in part to the lower than expected 
accelerator beam currents and some uncertainties regarding the electron beam energies. Planning is 
underway to re-evaluate the INL Calibration Pallet characterizations. However, this set of higher energy 
Calibration Pallet tests was beneficial since it identified that the use of ionization tubes (such as GM 
tubes) have considerable difficulties in fully counting and discriminating nuclear material gamma-ray 
signals during higher energy (> 10 MeV) interrogations. The higher energy interrogations produce high 
photoneutron yields that, after a sufficient slowing down time (~ several milliseconds), lead to significant 
neutron capture gamma rays. These capture events compete with the delayed gamma-ray emissions from 
a nuclear material detection within a GM tube. Gamma-ray detection system optimization efforts are 
needed for these higher energy applications. 

As previously mentioned, additional assessments with the Calibration Pallets are needed to better 
understand the various shielding effects at these higher beam energies and to fully maximize the PPA 
technology’s overall detection sensitivity for concealed nuclear material. However, Figure 16 clearly 
shows the enveloping performance range expected whenever shield material is introduced. For example, 
using a comparable inspection configuration14 and comparable data units, Figure 17 shows this significant 
increase in detection sensitivity for the 4.8-kg DU nuclear material and the INL Wood Calibration pallet. 
(Remember, the detection with the nominal 10-MeV operation is already well established). 
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Figure 17. The energy-dependent PND response for the INL Wood Calibration Pallet with and without 
the 4.8-kg DU plates. 
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5. SUMMARY AND RECOMMENDATIONS 

A prototype nuclear material detection system has been developed by INL, LANL, and the 
ISU/IAC, employing the PPA technology concept for the inspection of large transportation vehicles such 
as trucks, cargo containers and railcar containers. This technology development continues to demonstrate 
its superior capability in addressing the formidable problem of detecting the presence of shielded nuclear 
materials, especially HEU, and its flexibility in integrating with different detection technologies. The 
developed system uses energetic 8 to 12 MeV photons (i.e., a nominal 10-MeV electron accelerator) but 
the 14–18 MeV range still appears to provide optimal detection sensitivity. This energy range provides 
good cargo material penetration and subsequent photonuclear interactions to stimulate nuclear fissions in 
concealed nuclear materials. The PPA concept integrates several detection technologies that perform 
delayed neutron and gamma-ray detection between accelerator pulses to enable nuclear material detection 
and incorporates a GSDM system to help identify very dense or significant quantities of shield materials 
that could conceal nuclear material. 

The major radiation detection components of the prototype, 10-MeV PPA inspection system were 
built in CY04. During CY05, these components were integrated using a custom-developed, National 
Instruments™-type user interface. These integrated components were assembled and tested with a realistic 
cargo container testing configuration using a rectangular, 4.8-kg DU sample enclosed within most of the 
INL Calibration Pallets. Each pallet (with the nuclear material) was aligned with the interrogating beam 
and positioned in the center of a cargo container inspection configuration so that the nuclear material 
would have the largest possible material-to-detector distances. Based on 120-s, 125-Hz nominal 10-MeV 
inspections, the nuclear material was successfully detected within each pallet configuration studied. 

While the delayed neutron detection component (i.e., PNDs) is optimized for this nominal 10-MeV 
inspection application, the gamma-ray and GSDM components are not. Both components were originally 
selected based on operational and economical considerations and their ability to provide an integrated 
detection capability within this type of photonuclear environment. Additional operational component 
optimizations are needed to help define a final inspection system design. 

Based on the current project status, several items are recommended for continued research and 
evaluation. The list includes: 

1. A gamma-ray detection system optimization (advanced GM-tubes, scintillators, etc.) 

2. An optimal electron beam energies evaluation with the INL Calibration pallets based on the highest 
possible detection sensitivity and minimal forward dose 

3. A nuclear material detection characterization based on off-beam-centerline axis placement of the 
nuclear material (will define beam scanning [rastering] requirements, inspection standoff distance, 
and beam current requirements)  

4. Minimum detection limits (MDL) determination for the prototype system using various uranium 
quantities, thicknesses, and orientations (Relate data to HEU detection sensitivity) 

5. A characterization of the prototype system for nuclear material identification using multiple 
electron beam energies (e.g., differentiate between HEU and DU) 

6. A photonuclear characterization of the neutron yields and energy spectra from various materials in 
order to support complimentary photon and photoneutron interrogations.  
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Appendix A 

One-Step Versus Multi-Step Transport Calculation for PPA 
Applications Using the MCNPX Code 

Currently there are two numerical approaches that could be employed to calculate the delayed 
neutron detector response for the Pulsed Photonuclear Assessment (PPA) Technique. Both approaches 
use the LANL, Monte Carlo-based, computer code MCNPX (Publicly released Version 2.5, Reference 
18). While it is recognized that other developing versions of MCNPX are available for testing with 
improved photonuclear capabilities, this Appendix uses the publicly released version.  

The first approach basically uses a single MCNPX model to calculate a single time-dependent, 
delayed neutron response. The second approach is similar, but breaks the complex transport problem into 
two more manageable calculations and includes the time-dependence of the delayed neutron emission in a 
separate step. Both approaches use a single delta function, or electron impulse, source to start the 
transport calculations. The second multi-step approach is currently used at the INL and has been 
successfully benchmarked for the complex and sophisticated PPA-type applications. Both approaches 
appear to be viable, however, due to current MCNPX code limitations, such as with photofission-induced 
delayed neutron and gamma-ray production, the former approach with the single time-dependent delayed 
neutron response function does not appear to be adequate for PPA-type applications. The details of both 
predictive approaches are discussed in more detail below along with the associated pros and cons.  

Numerical Approach No. 1

Not withstanding MCNPX’s inability to address the multi-pulsed nature of the PPA technology, the 
code can theoretically perform the complete time-dependent transport problem for a single interrogating 
pulse. This single pulse transport capability would involve the simultaneous and full transport and 
production of particles that would include: (1) impulse source electrons, (2) bremsstrahlung photons, 
(3) photoneutrons, (4) photofission events in any nuclear material, (5) thermalization of neutrons, 
(6) neutron-induced fission events in any nuclear material, (7) scattered photons, neutrons, and electrons, 
(8) production of radiative capture photons, and (9) production of delayed neutrons and gamma-rays from 
photofission and neutron-induced fissions. Although theoretically possible with the MCNPX code, this 
single calculation approach has several transport bottlenecks that limit the code’s ability to address PPA-
type inspection applications. 

First, sufficient source electrons are needed to generate enough bremsstrahlung photons to induce 
direct photofissions and indirect, neutron-induced fissions resulting from photoneutrons subsequently 
generated from the bremsstrahlung within the nuclear material and/or its surrounding environment. The 
number of fissions per source electron is typically 1.0E-6 to 1.0E-7 since the U-235 and U-238 cross 
sections for photofission (0.35 and 0.16 barns max, respectively) and photonuclear neutron yield 
(1.2 barns) interactions are relatively small. Then, depending on the type of fission event, only one 
delayed neutron is produced in 30 to 100 fission events. Finally, one of these delayed neutrons must then 
be transported from the uranium target through a cargo loading configurations (e.g., Calibration Pallet 
materials) to a Photonuclear Neutron Detector (PND) and induce a detection response. This latter 
transport step has an efficiency of 1.0E-4 to 1.0E-9 depending on the pallet material and the detector 
efficiency. Because this is a time-dependent calculation, a time discretization (or time bins) further 
degrades the statistical error. A calculation of this sort is possible, but requires adequate computer power 
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(parallel processing) to fully resolve the detector response. In other words, the full transport calculation is 
complex and would require sufficient computing resources to alleviate many bottlenecks. Implementation 
of sophisticated variance reduction techniques would also be necessary for a calculation of this type. 

In addition to the transport complexities, special MCNPX photofission libraries would be required 
for PPA applications. The photofission libraries would need to include both delayed neutron and gamma-
ray production from both U-238 and U-235 (and other nuclear materials of interest). Currently, the 
MCNPX does not include the production of delayed neutrons/gamma-rays from photofission, and 
consequentially, the delayed neutron production rate per source electron (or measured beam current) 
would be under-predicted. In the case of the INL’s PPA approach, where the bulk of the fission events are 
due to photofission events (this is particularly true in the case of our standard DU test target with mostly 
U-238 atoms present), the delayed neutrons would be significantly under-predicted. MCNPX will 
however produce a delayed neutron signal, but only from the small neutron fission component and no 
signal component from the photofission events.  

This calculational approach is also based on just a single impulse electron pulse (or accelerator 
pulse). In actuality, the PPA accelerator system will generate 15,000 pulses (125 Hz operation) in one 
120-second integration period. MCNPX does not have the capability to generate and sample 
15,000 square-wave pulses with a 3-µs pulse width and an 8-ms separation. However, if a single 
accelerator pulse response function can be made to calculate the time-dependent, delayed neutron 
detection response, then this single response curve can be appropriately partitioned and summed to mimic 
the full 15,000 accelerator pulse response as measured (see Appendix B for additional discussion). 

Numerical Approach No. 2

The second numerical approach is similar to the first, but breaks the transport problem into two 
time-independent calculations that are more manageable and make it easier to obtain good statistical 
convergence in a reasonable amount of time with reasonable computing power. The first transport 
calculation transports a single impulse function of accelerator source electrons into a converter to produce 
bremsstrahlung photons which in turn produce photoneutrons, photofissions in the DU target, and 
neutron-induced fission events from the fast and thermalized photoneutrons. The tally result in the DU 
target is an estimate of the fissions per source electron. 

Separate FORTRAN programs then calculate estimates of the number of delayed neutrons emitted 
from the DU target based on the number of fissions per source electron, the beam current, and delayed 
neutron yields from both photofission and neutron-induced fissions for both U-235 and U-238. Also 
included in these estimates is the time-dependent emission of delayed neutrons from the DU target in 
order to properly time bin the delayed neutrons. Six delayed neutron groups are used with corresponding 
half-lives and decay constants. This calculation provides the time-dependence for the delayed neutrons 
emission, accounts for the delayed neutron contributions from all previous accelerator pulses, and mimics 
the 120-second time-dependent integration counts measured. 

The second transport calculation alleviates one of the bottlenecks mentioned above. This 
calculation basically estimates the probability of delayed neutrons emitted from the DU target and scoring 
a count in the PND. Delayed neutrons, assumed to be emitted uniformly from the DU target, are sampled 
from a delayed neutron energy spectrum. These neutrons are then transported through the DU target, the 
cargo loading configuration, the cargo container steel walls, the surrounding air, and the PND. The 
probability of a delayed neutron making it from the DU target to the detector is very small. If the pallet 
material is borated-polyethylene, for example, the probability is less than one neutron in a billion. This 
part of the calculation would be very difficult for the first numerical approach to handle and is the main 
reason the second numerical approach described here was adopted.  
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Summary

Both numerical approaches are similar in nature; both employ MCNPX to perform the transport of 
the same particles and use a single impulse starting function for the accelerator pulse. However, due to the 
lack of production of delayed neutrons and gamma-rays from the photofission events and the complexity 
of a single step transport calculation, MCNPX cannot be expected to accurately predict the delayed 
signature responses needed for nuclear material detection with the PPA technology. However, the second 
numerical approach described above (i.e., the INL approach) can account for both photon- and neutron-
induced fission delayed neutrons and has been previously benchmarked against actual PPA-type 
measured data (Reference 14). 
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APPENDIX B 

Single- versus Multiple-Pulse Effects
for the Pulsed Photonuclear Assessment (PPA) Technique 

The following discussion attempts to clarify the difference between single pulsed interrogation 
technology predictions and actual multi-pulsed interrogation technology results. Specifically, this 
discussion focuses on the multi-pulsed counting technique used in the Pulsed Photonuclear Assessment 
(PPA) technology at the INL. As will be shown for the PPA application, multi-pulsed sources should 
always be able to provide increased detection capabilities over a comparable, single-pulsed 
operation.

One of the primary goals of the PPA technique is to count emitted delayed neutrons following each 
accelerator bremsstrahlung flash of radiation that induces fissions in a depleted uranium (DU) target. For 
this discussion, the multi-channel scalar (MCS) is setup with 512 channels corresponding to an 8.0 ms 
time period. Delayed neutrons are counted only in the 2–8 ms time window (or a 75% live time) so as to 
avoid the initial “flash effects” or bremsstrahlung-induced prompt effects (0 – 2 ms). Otherwise, the 
chosen 2–8 ms window is not special. 

For the sake of discussion, let us assume the accelerator operates at 125 Hz with an average beam 
current of 3.0 A having a nominal 10-MeV electron beam operation. The electron pulse width is 3 s
and occurs every 8 ms during a 120-second inspection, 15,000 accelerator pulses will be generated. 
Furthermore, we will assume the DU target is centered in a plywood pallet (34” × 40” × 42”) with the DU 
positioned about one meter from the photon source. Photofissions and neutron-induced fissions are 
induced in both isotopes (235 and 238) of the uranium target. Also, we’ll assume our neutron detectors 
are 4 detectors with a 100% counting efficiency (so that all delayed neutrons emitted during the 
counting window time interval are all counted).  

First, it is instructive to consider a single accelerator pulse, specifically Pulse No. 1 and forget 
about the following 14,999 pulses for now. This one pulse will induce approximately 41,155 fission 
events in the DU; the bulk due to photofission of the U-238. From the delayed neutron yields 
corresponding to the four components (U238 and U235 photofission and neutron fission), a total of 
approximately 1,200.4 delayed neutrons will be emitted over all time following the pulse. If we now setup 
the MCS to sample the time-dependent delayed neutron signal, the response curve is shown in 
Figure B-1. The MCS performs 15,000 counts, one every 8 ms, with a 2-8 ms acquisition window and 
resets at the end of each 8 ms interval. 

Figure B-1 shows that in the first 2-8 ms interval 5.539 delayed neutron counts are registered. The 
MCS resets and in the second 2–8 ms interval 5.445 delayed neutrons are counted. The delayed neutron 
counts continue to decrease with increasing interval, or “No. of Pulse Time Intervals” as labeled on 
Figure B-1. If these counts are totaled over the 15,000 intervals (Figure B-1 only shows up to 
1,500 intervals), a total of approximately 900 delayed neutrons will have been accounted for, or 
approximately 75% of the expected 1,200.4 delayed neutrons to be emitted from the single accelerator 
pulse.

If we now repeat this experiment, and setup the MCS in the integration mode, we would obtain a 
response similar to Figure B-2. Here the single pulse delayed neutron signal is summed up and at the end 
of the 15,000th time interval approximately 900 (or numerically exactly 896.585) delayed neutron counts 
will have been registered. 
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Note the delayed neutron response curve of Figure B-1 is really a characteristic decay curve for the 
emitted delayed neutrons. For the supporting numerical calculations here, the delayed neutrons are 
conveniently divided into the standard six delayed neutron groups characterized by their own half-life 
ranging from 172 ms to 52.38 seconds for the U-238, and 230 ms to 55.72 seconds for the U-235. Both 
U-238 photofission and neutron-induced fission events are assumed to have the same group structure, 
although they have different delayed neutron yields (similarly for the U-235). 

In the actual PPA technology, there is not one, but 15,000 accelerator pulses in the 120-s inspection 
— one every 8 ms. Delayed neutrons produced in previous pulses contribute to the subsequent pulses and 
their corresponding count windows. Contributions from these previous pulses are substantial. Consider, 
for example (and using Figure B-1 data), the second pulse and corresponding 2–8 ms count window, 
would register 5.539 + 5.445 counts, or 10.984 total counts. The 5.539 counts are due to the second 
accelerator pulse and the 5.445 counts are due to the first accelerator pulse. The total integrated counts in 
the MCS however are a whopping 5.539 + 5.539 + 5.445 counts, or 16.523 counts, because we now need 
to include the additional 5.539 delayed counts registered from the first pulse. The integrated counts grow 
in an exponential manner. Figure B-3 shows the MCS integrated counts as a function of the accelerator 
pulse number. 

The top curve in Figure B-3 is the MCS total integrated delayed neutron counts that we might 
expect in an actual run, but of course, under our 4  detector and 100% efficiency. At the end of the 
15,000 accelerator pulses, the MCS has counted 12,674,400 delayed neutrons (120 second integration 
count period). The delayed neutrons added up rapidly in the MCS. 

Also, plotted in Figure B-3 is a second curve (lower curve). This curve is hypothetical, but is 
presented to demonstrate a point. The curve presents the integration or summation of only the delayed 
neutrons produced by that particular pulse (or just the 5.539 delayed neutrons) and no delayed neutron 
contributions from previous accelerator pulses. Hence the curve is linear and calculated at each 
accelerator pulse number to have a value of (accelerator pulse no.) * (5.539 delayed neutrons). At the end 
of the 15,000 pulses, the hypothetical total delayed neutron counts would only be 83,085 counts (or 
15,000*5.539). The difference between 12,674,400 and 83,085 counts is huge and clearly shows the 
importance of the delayed neutron contributions from the previous pulses. This represents a difference of 
a factor of 152! 

Another way of looking at this issue is by exploring the differences between the total integrated 
MCS counts using the multi-pulse method (actual PPA method or top curve in Figure B-3) and simply 
scaling a time-dependent delayed neutron response signal from a single accelerator pulse (for example 
Figure B-1). A logical question may be: Is it possible to obtain an identical integrated delayed 
neutron response for 15,000 accelerator pulses using the delayed neutron response from a single 
accelerator pulse?

To answer this question, let’s first estimate the total delayed neutron counts using a single 
accelerator pulse and compare it to the total integrated MCS counts we calculated above for an actual run 
(12,674,400 counts).  

First, let us estimate the total counts one might expect if a single pulse response is used. If one 
simply integrates the single accelerator pulse response from 2 ms to 120 seconds, we would obtain 
approximately 1,200 delayed neutron counts. Therefore, if we have 15,000 identical pulses overlaid on 
top of the single response, so as to increase the signal magnitude by a factor of 15,000, then the total 
integrated 2 ms to 120 second delayed neutron counts would be (15,000 * 1,200) = 18,000,000 delayed 
neutron counts. However, since the PPA technique’s count duty cycle is 75% [(2–8 ms)/8 
ms]*100 = 75%, we would need to adjust the total counts to (18,000,000)*(0.75) = 13,500,000 delayed 
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neutron counts. Compared to the 12,674,400 counts registered by a 2–8 ms acquisition window following 
each of the 15,000 individual accelerator pulses, this is only 6.5% larger in magnitude and represents a 
reasonable means to estimate the exact multi-pulse numerical calculation if one uses all the delayed 
neutron emissions generated after 2 ms from an appropriately-scaled, single pulse response.

To better understand why the single response gives a reasonable estimate, let us look at two 
extreme cases. The first case will produce exact agreement between the two methods and the second case 
will show that the extreme case is only a factor of two larger or 100% overestimate of the exact numerical 
response. Because of the relatively short effective half-life (2-6 s) of the delayed neutron fission response 
compared to the longer 120-s integration time, the PPA detection method is more representative of the 
first extreme case. 

The first extreme case will assume that the delayed neutron radiation is emitted at 2 ms after the 
accelerator pulse has fired and the delayed neutron radiation then decays rapidly and is completely gone 
by 8 ms. Because of the rapid decay, there will be no delayed neutron contributions from previous pulses. 
In this case, the single pulse method will estimate the exact number of total delayed neutron counts. 

The second extreme case involves a very long and slow decay of the delayed neutron radiation, 
such that the decay curve (re: Figure B-1) is flat and constant. Therefore, we can assume that the delayed 
neutron contribution from the present pulse and contributions from each and every previous pulse are 
identical. Let us call this contribution ( ) where  is the delayed counts in the 2-8 ms window, and we can 
assume  <<5.539 counts, although it is not relevant what the value is exactly. Then, the multi-pulse 
would register the following total integrated counts: (15,000 + 14,999 + 14,998 + ……..3 + 2 + 1)* over
the 120 seconds. The single pulse, on the other hand, would estimate (15,000*15,000)* , or twice the 
number of counts the multi-pulse method would predict. 

Hence, the single pulse method will over-predict total integrated counts somewhere between exact 
and twice the true value. In our case, where the delayed neutrons have relatively fast decay times, the 
single pulse method using the total time-dependent neutron emissions (corrected for the number of source 
particles), will produce a reasonable estimate of the actual total MCS-integrated delayed neutron counts 
using small acquisition windows. 

In either extreme case above, the length of the time integration period (e.g. 120 seconds) is 
independent of the result. The primary dependency appears to be on the decay rate of the radiation being 
counted. In the actual delayed neutron case with 15,000-pulse, 120-second integration time, and 2-8 ms 
count window, the dependency would seem to be on both the delayed neutron decay rate and to a lesser 
extent on the integration time, because of the exponential decay nature of the delayed neutron radiation. 

In summary, relative to the PPA technique, good comparison estimates can be obtained if one 
compares the “total” delayed neutrons (i.e., 2 ms to 120 s) from a single pulse prediction to the 
experimental data acquired in the 2- to 8-ms acquisition window after each 125-Hz accelerator pulse 
during a 120-s inspection. Hence, a single pulse of sufficient intensity could conceptually provide enough 
information for effective nuclear material detection. Yet, it must be noted that whatever intensity is 
considered “large” enough, its utilization must still be technologically feasible in a single pulse. 
Furthermore, if this source could be pulsed at any frequency, it would again result in a further enhanced 
detection capability. 
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Figure B-1. Number of delayed neutrons counted in subsequent count intervals from a SINGLE 
accelerator pulse (Pulse No. 1). 

Figure B-2. Integrated delayed neutron counts from a SINGLE accelerator pulse (Pulse No. 1). 
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Figure B-3. Actual MCS integration delayed neutron count curve (top curve), plus a hypothetical curve 
(lower curve) in which delayed neutron contributions from previous pulses are ignored. Note the large 
difference between the two curves indicative of the important role delayed neutrons from previous pulses 
play in the total count. 
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